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Multigrid algorithms are presented which, in addition to eliminating the critical 
slowing down, can also eliminate the "volume factor". The elimination of the 
volume factor removes the need to produce many independent fine-grid con- 
figurations for averaging out their statistical deviations, by averaging over the 
many samples produced on coarse grids during the multigrid cycle. Thermo- 
dynamic limits of observables can be calculated to relative accuracy er in just 
O(e72) computer operations, where e r is the error relative to the standard devia- 
tion of the observable. In this paper, we describe in detail the calculation of the 
susceptibility in the one-dimensional massive Gaussian model, which is also a 
simple example of path integrals. Numerical experiments show that the suscep- 
tibility can be calculated to relative accuracy er in about 8e~ -2 random number 
generations, independent of the mass size. 

KEY WORDS: Multigrid; massive Gaussian model; Monte Carlo; critical 
slowing down; volume factor; thermodynamic limit; path integrals. 

1. I N T R O D U C T I O N  

O n e  of  the a ims in s tat is t ical  physics is to ca lcula te  va r ious  ave rage  p rope r -  

ties o f  conf igura t ions  g o v e r n e d  by the B o l t z m a n n  dis t r ibut ion.  This  is 

usual ly  d o n e  by m e a s u r i n g  these averages  ove r  a sequence  o f  M o n t e  Ca r lo  
i terat ions.  Unfo r tuna t e ly ,  such processes  tend to suffer f rom several inde- 

penden t  inefficiency factors  tha t  mul t ip ly  each  o the r  and  thus  p roduce  very  
expens ive  compu ta t i ons .  

The  best k n o w n  of  these inefficiency factors  is the critical slowing down 
(CSD) .  This  is the p h e n o m e n o n ,  typical  o f  s imula t ions  of  cri t ical  systems, 
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that with the increase in lattice size there also comes an increase in the 
number of full Monte Carlo passes over the lattice needed to produce a 
new configuration which is statistically "useful", i.e., substantially inde- 
pendent of, or only weakly correlated to, a former configuration. Con- 
siderable effort has been devoted to reducing the critical slowing down. For 
simple cases with real variables, classical multigrid methods can eliminate 
the CSD. For more complicated models (e.g., ~b4; or discrete models) more 
recent publications report on simulation techniques that partially or com- 
pletelyC~.8.9.~3~ eliminate the CSD. This means that the time to produce an 
independent configuration is proportional to the number of gridpoints. 

The elimination of the CSD is very important, but there is another no 
less important factor of slowness, the volume factor. To calculate a ther- 
modynamic quantity to a certain relative accuracy e,., one needs to produce 
O(e,.-'-) essentially independent configurations to average out the deviation 
exhibited by each of them, where the relative accuracy er is the error 
relative to the standard deviation of the observable in question. Also, the 
size of the grid must increase as some positive power of e71 . Thus, even if 
the CSD has been completely eliminated, the overall work increases as 
O(e~-2Na), where N is the linear lattice size and d is the dimension. An 
important advantage of the multigrid approach is that it can drastically 
reduce the volume factor N a as well, by averaging over many samples 
produced in prolonged Monte Carlo passes on coarse grids. Indeed, we will 
exhibit cases in which the volume factor is completely eliminated together 
with the CSD. 

The elimination of both the volume factor and the CSD means that a 
thermodynamic limit can be calculated to an accuracy of + e in optimal 
time, i.e., in only O(e -~-) computer operations. This is just the same order 
of complexity as needed to calculate, by statistical trials, any simple 
"pointwise" average, such as the frequency of "heads" in coin tossing. By 
contrast, both the volume and the CSD factors multiply the statistical 
factor (e-2) in the operation count of conventional algorithms. 

The elimination of the volume factor was first been demonstrated ~3" 4. 6) 
for the Gaussian model with constant coefficients. It was shown there, for 
the one-dimensional Gaussian model, that the susceptibility can be 
calculated to accuracy e,. in about 4e; -2 random number generations, while 
the average energy per degree of freedom requires 3e,72 such generations 
for a similar accuracy. In the two-dimensional Gaussian model, the suscep- 
tibility can be measured to accuracy er in about 20e,72 random number 
generations. 

In this paper we treat the one-dimensional massive Gaussian model 
and we show that, using an appropriate multigrid algorithm, one can 
calculate the susceptibility in an optimal time. Stated differently, we show 
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that the multigrid algorithm effectively produces an independent sample in 
just O(1) computer operations. More precisely, the result is that the suscep- 
tibility is calculated to relative accuracy e,. in less than 8e7 2 random 
generations, essentially independent of the mass size, although the algo- 
rithm flow does change with that size (see Section 2.4). The computational 
time of this "optimal multigrid" algorithm is thus smaller by a factor N d 
compared to that of a conventional multigrid algorithm, e.g., such as that, 
of refs. 5, 7, and 10, which measure the observable only once per multigrid 
cycle (of. Table III). 

From the quantum mechanical point of view, the one-dimensional 
massive Gaussian model describes an action of a discretized path integral 
with quadratic potential (see Section 2.2). Therefore, the elimination of the 
volume factor is important also for path integral calculations. 

2. O N E - D I M E N S I O N A L  MASSIVE GAUSSION MODEL: 
FAST CALCULATION OF THE SUSCEPTIBILITY 

A multigrid algorithm for simple continuous-state models has been 
described by Brandt et al. 15~ and independently by Goodman and Sokal. 17~ 
The latter also tested it for the Gaussian model and reported that it indeed 
eliminates the CSD for dimension d>~ 2. The two approaches are not the 
same: while Brandt et al. use linear interpolation, Goodman and Sokal 
employ constant interpolation. We have recently s h o w n  13'4"61 that our 
multigrid Monte Carlo approach (unlike that of Goodman and Sokal) can 
be used not only for eliminating the CSD, but also for eliminating the 
volume factor. Here we extend this work to the one-dimensional massive 
Gaussian model. 

2.1. C o n t i n u o u s  Case 

The Hamiltonian associated with the continuous case is 

d/tO(u)=I:u~.dx-4-m2~:u2dx (1) 

where u = u ( x )  is a real, continuous function (configuration) defined for 
0 <~ x ~< L and m is a real number denoting the mass size. Homogeneous 
Dirichlet boundary conditions, u(0)= u ( L ) =  0, are used. Consequently, a 
general configuration u(x)  can be expanded as 

u(x) = ~ cjsin(jnx/L) (2) 
j = l  

822/82/5-6-19 
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where the Fourier coefficient cj are real. The magnetization is given by 

where Z*,  here and below, stands for a summation over odd integers. The 
probability density of each configuration u is given by the density function 
of the Boltzmann distribution 

e- J~(u)/T 
P(u) (4) 

Z(T) 

where T is the temperature and Z(T) is a normalization factor. It can be 
shown (see Appendix A) that the average magnetization ( M )  and the 
susceptibility ( M z) - ( M )  2 are given by 

( M )  = 0  

( M 2 )  _ ( M ) 2  --- ( M 2 )  _ 4  _ ~, ,  
7t'- j = l  

~2j4 + m2L2j2 

(5a) 

(5b) 

We define any statistics for the continuum as the limit of the statistics for 
systems truncated to a finite number of Fourier components. 

2.2.  D i s c r e t e  Case  

In order to measure such statistical averages numerically, it is 
necessary to discretize the system. On a grid with meshsize h = L/N, the 
discretized Hamiltonian ~,(u)  approximating (1) can be written as 

1 N N-I 
Jt~h(u)=~ Z (u , -u , - , )  z +m2h Z u~ (6) 

i = 1  i = 1  

where ui=u(xi) are the variables at gridpoints x i =  ih, 0<~ i<<.N, respec- 
tively. For the simplicity of the multigrid algorithm we assume N =  2 k. 
Assuming again zero boundary conditions, u 0 = uN = 0, we can represent a 
general grid configuration by 

N - - I  

Ui= ~ cjsin(jTtxi/L) (7) 
j=l 

The discrete magnetization is given by 

h ~, h ~1, cos[j~zh/(2L)] (8) 
Mh(u) =~ u(xi) =-~ cj sin [jnh/(2L)] 

i = O  j = l  
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Similar to the continuous case, the probability distribution is given by (4), 
where ~,(u) replaces i f (u) .  Therefore, one can derive (see Appendix A): 

( M h )  = 0  (9a) 

, 7,]l 4 u~l, cos2[jnh/(2L)] 
(Mr,)  =-~-3 ,.., 4sin4[jrch/(2L)] +m2h, - sin2[jnh/(2L)] (9b) 

j = l  

From the quantum mechanical viewpoint, the discretized Hamiltonian (6) 
can be the action of a discretized path integral u, where ui, i = 0 ..... N, are 
the positions of a single particle which travels from u~ to u~+~ in time- 
step h. The left part of the Hamiltonian stands for the kinetic energy of the 
particle and the right part stands for the quadratic potential energy of the 
particle. The density function for the path u is just as the Boltzmann dis- 
tribution we have described above. 

2.3. Description of the Multigrid Cycle 

Consider the following generalized Hamiltonian: 

1 ~ N - - l  

J~,,(u)=~ (.i-u,_,)2+h ~ ~,u, 
i = l  i = l  

N - - l  N - - l  

+m'-hbh Y" u~ +mZha,, ~ uiui_l 
i= l  i= l  

(10) 

On the finest grid, r  ( i = 1  ..... N - - l ) ,  ah=0 ,  and b h = l  are taken. 
The more general form of the Hamiltonian is needed for the algorithm 
recursion. 

The coarse grid with meshsize H = 2h is constructed by taking every 
other gridpoint. The coarse-grid function u H  = (U O ,  H, ".', uin,  ..., idH/9)_ 

describes a displacement of the fine-grid function u h = (Uo ..... ui ..... UN); i.e., 
it modifies the latter through #Tterpolation and addition: 

u h = ~J' + I~u 1~ ( 11 ) 

where t7 h is the fine-grid configuration at the stage of switching to the 
coarse-grid and I~  denotes the linear interpolation from grid H to grid h. 

The fine-grid Hamiltonian #'~,(u h) resulting from that interpolation can 
be written as follows: 

~h(~t h + Ihu n) = ,~/,(t~ h) + JCn(U n) (12) 
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where gfj,(5 h) is given by (10) and 3r u) is 

I N/2 N/2 -- l 
~JleH(uH)=H +EI (UT--"7-1)2=Ju I:IE ~7U7 

N--I N--I 
+m2Hb. Y. (us)=+m2HaH ~. ufu7_, 

l=l I=l 
(13) 

with 

ah bh ah 3bh (14a) 
a l l =  ~-+-~,  b , , = ~  + 4 

and 

- '  . . . .  " -" + r  +Of '+ ,  O f -  -u,_2 + zu, - " , + 2  
2h 2 4 

m2bh ~h m2ah h 
-F 2Ui+ = + T (~7~_, + 2~7~' + u,+, ) + 4----~7,_ = + 2~7~:_, + 2~7~ "" + zT';+,) 

( I = / / 2  = 1 ..... N/2-  1) (14b) 

representing fine-to-coarse induced field-like terms. The coefficients a u 
and b u depend only on a h and b h. The coarse field terms ~b~ / are calculated 
from the details of the fine-grid configuration at coarsening and 
are fixed throughout  the processing on the coarser level. The variables 
of the coarse grid u~ t are initially set to zero, corresponding to zero initial 
displacements. 

Having calculated the field ~b u once for all, ,r is directly calculated in 
terms of the coarse-grid configuration u ~/, there is no need to explicitly 
perform (12) in order to relax the coarser level. One can therefore run 
a long Monte  Carlo process with ~ n ,  (13), before explicitly updating u h 
by (11). 

The entire algorithm can be described by a sequence of multigrid 
cycles for the finest level. A cycle for any given ("current")  level is recur- 
sively defined by the following five steps: 

1. First make v~ Monte  Carlo sweeps on the current level. Then, if 
this level is the coarsest, go to 5. 

2. Create the next coarser level from the current one by determining 
the coefficients (14a) and the coarse field-like terms (14b). 



Optimal Multigrid Algorithms 1509 

3. Perform y multigrid cycles for the coarse level. (7 may change from 
the current level to another.) 

4. Update the current level by performing (11). 

5. Finally, make additional v 2 Monte Carlo sweeps on the current 
level. 

The Monte Carlo sweeps are performed by changing each variable in 
its turn randomly according to its associated distribution, regarding its 
neighbors as fixed. 

The values of v~, v2 and y are discussed below'. 
The massive Gaussian model displays criticality as m ~ 0 .  The 

described cycle, even with 7 =  1 (a V-cycle), would eliminate the critical 
slowing down, but the volume factor remains intact. However, the main 
issue here is to eliminate the volume factor as well, for any mass size m; the 
way to do so is described next. 

2,4. Fast Sampling of Susceptibility 

As in the simple Gaussian model, the susceptibility (5b) is dominated 
by contributions from large-scale fluctuations (low-frequency Fourier com- 
ponents), regardless of the size nil. Therefore, the purpose of the simulation 
is to sample quickly as many such fluctuations as possible. The way to do 
this is to use a cycle index 7 larger than 1 and to calculate the susceptibility 
over the many measurements on the coarsest level. Furthermore, the 
optimal multigrid algorithm differs from the one that has been described 
for the simple Gaussian model; 13" 4. 6~ the cycle index may change from one 
level to another, depending on the parameter m. 

The magnetization Mh can be evaluated on any level [plug (11 ) in 
(8)], without going back to finer levels. Thus, many measurements of M~, 

can be made within a cycle, and their average M~, can be used as an 
estimate for the discrete susceptibility (M~,). In practice, measurements are 
taken only on the coarsest level, after each relaxation sweep there, since 
only there are substantial changes in M h introduced. 

We next study the number si of relaxation sweeps the algorithm needs 
to perform on level i, i.e., on the grid with mesh size hi=2ih [ i = 0 ,  1 ..... 
{=log2(N/2) ] ,  in order to achieve accuracy e in the estimation of the 
susceptibility. The total expected error e in measuring ( M  2) is calculated 
by Fourier analysis in Appendix B. From (B2), the total error in measuring 
(M 2) relative to the standard deviation a, where 

a=((M4)_(M2)2),/2=x/~ (M2)=O(n 2 ~-mm2L ) 
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i s  

e I ~ rt- + m - L -  
- l / -  3 - 3  e , . = - = O  s. h . L  ---~7-----~-~ +r.d.e. (15) 

a i ' ' n - + m - h T /  

where the last term added here (r.d.e) is the relative discretization error 
estimator which is discussed in Appendix C. It is important to emphasize 
here that raising p, the order of the discretization error, beyond p = 3 has 
no benefit. [See (C1). This point, incidentally, was missed in ref. 4.] 

The total work (operations) on all the levels is clearly 

I 

W =  ~ siO(L/h~) (16) 
i = O  

The optimal choice for s; (yielding either minimal e for a given W or mini- 
mal W for a given e) is obtained when oedas~+21aW/as~=O, which by 
(15) and (16) yields 

. . . . . . .  /3 + m2L_, _v3 4-  4 ~ ' -  "t- I ~ / - L - \ -  ] 9 8 U 3  
s i=2 ,  L -  / l  i ~ ~ 1  =,~3.<.  9 ~ 

- •- + m-h 7 J \ n- + m-h 7 J 

where 2], 22 and 2 3 are independent of i. Hence, the optimal cycle index at 
level i is 

"~ "~ "~ ")13 . . . .  / n- + m-h 7 \ -  S i  + l __ 2 o / ~  / 

Yi<,p,- si \n2 +4m2h~) (17) 

The actual values of (17) for constructing an optimal multigrid cycle are 
given in Table I as a function of mh,  However, we will see in the 
experiments that the results are not much sensitive to changes of y within 
quite large margins. In fact, analyzing the following three cases would show 
wide ranges of ~, at which the optimal order 14/= O(er -2) is still obtained. 
For each of the cases we will use f ixed y, hence s~=s~/, where s = 
(v~ + v2). #cycles. Since h i L - t =  O(2~-t), we can perform the summations 
in (15) and (16). Using the discussion in Appendix C and the relation 
( 7 =  O ( L T / ( ~ z 2 q  - m2L2)), we can calculate the general relative discretization 
error in each of the three cases: 

1. For the case h~ < n/m at all levels ( i=  0 ..... l) 

and 

y-i/2 _2-31~ 
e , = O  s -1/2 l _2_3y t /2 j+O(2-1P . )  (18) 

( W = O  s l _ 2 y _ ~ j  (19) 
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Table I. Constructing an 
Optimal Multigrid Cycle" 

Practical 

mh i 7 io~ )'iopl 

,~ 1 6.35 6 
0,5 6.05 6 
1 5.40 5 
2 4.19 4 
4 3.15 3 
8 2.70 3 
,> 1 2.52 3 

a The  table gives the opt imal  
cycle index )'ioo, at level i as a 
function o f m h  i (the mass  size 
t imes the meshsize at level i). 

for any 2 < 7 < 2 6 ,  where p .  = m i n ( 3 , p ) .  Actually, by choosing y and the 
approximat ion  order p so that  7 is significantly smaller than 22p*, we can 
ignore the second term in (18), yielding W =  O(e72). While 7 = 7opt indeed 
minimizes We~, the other cycle indices (2 < 7  <22P*) give practically the 
same efficiency. This case is very 

2. For  the case h~ > rr/m at 

e r = O I S -  1/2 

similar to the simple Gaussian case. t4~ 

all levels ( i = 0  ..... l) 

~ - t /2  9 - t \  
- - z - - ~ )  + 0(2- ')  (20) 
--z 7 - ]  

and W is as before (19), for any 2 < 7 < 4. As any 7 in this range is already 
smaller than 22 , the second term in (20) can be ignored, yielding again 
W =  O(e,-2). 

3. As h ~ 0 the last case will evolve eventually to the case h ; <  n/m 
for i = 0, 1 ..... k - I and hi > x/m for i = k, k + 1 ..... 1. Generally, in this case 

~r=O(s-'ny-'P- L (2 - ' 7 ' / 2 )  j )  
j = 0  

"~- 0 ( S-1/27-1/2 1 - -  ( 2 - 3• l /2)k m 2 L  2( 2 - -  - -  2 --371/2 

+ 0(2- 'p.)  (21) 

and W is as before (19), for any 2 < 7 < 2 6 ,  where Ic=l-k stays constant  
as h ~ 0. As mentioned earlier, a multigrid cycle as described in Table I 
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indeed minimizes We~, but by choosing any fixed ~, in the domain 
( 2 < y < 2 2 p . ) ,  we can neglect the third term in (21), again yielding the 
optimal efficiency W =  O(e;-2). 

2.5.  N u m e r i c a l  Resu l ts  

We have tested the multigrid algorithm for different values of  m with 
grid of  sizes up to 512. Our  main aim was to show that using appropriate 
values of y one can calculate the susceptibility in an optimal time, while the 
use of  unsuitable values of  y undermines optimality. The susceptibility has 
been measured over just one cycle. Within the cycle, many measurements 
are taken, in fact after each Monte Carlo step on the coarsest level, the 
level with just one internal point, i.e., hi=L~2. The average of the 
measurements M~, is an approximation for (M~,) ,  (9b), which is also an 
approximation for the thermodynamic limit ( M 2 ) ,  (5b). The relative 
accuracy is defined as e, .=[M~,-(M2)[/a and it is averaged over an 
ensemble of I0,000 runs.-" We define ~ to be the expected value of  
# R A N . e ~ ,  where # R A N  is the amount  of  work spent in the cycle, 
measured by the number  of times a random number is generated. Thus, a 
should turn out to be a constant if and only if the algorithm solves to 
relative accuracy e,. in O(L7-') operations. We measured a for three different 
cases. Results are presented in Table II for L = 1, T =  1, ho = 1/N and 
h t =  1/2, showing that the algorithm is not sensitive in a wide range of 
suitable y. We see that any appropriate cycle index will lead to the optimal 
efficiency, i.e., 0c tends to a constant as N grows (see cases m = 0 . 5 ,  
t r=  0.05749 and m = 64, t r =  1.672 x 10-4). In the last case, m =400 ,  tz= 
4.397 x 10 -6, ~ turns out to be a constant when cycle index 3 is used, 
but cycle index 6, as explained above, is too big for this case. For  any 
case, cycle index 2 (W-cycle) is below the optimal range, demonstrating 
logarithmic growth of  ct. The main conclusion is that an optimal algorithm, 
with practically constant ~, can always be devised. 

In Table III ,  we compare  our  optimal multigrid Monte Carlo algo- 
rithm and a conventional multigrid algorithm, where the susceptibility is 
measured once per V-cycle. ~5~ It is clear that better accuracy means using 
larger grids. Therefore, as the accuracy is improved, the ratio between the 
complexity of  the two algorithms increases. For  example, in order to 
achieve a certain accuracy in the case m = 64 and N =  512, it would cost a 
conventional algorithm 330 times the work required by the optimal multi- 
grid algorithm as presented here. Practically, while the computat ional  time 

-' The experiments for m = 64 and N= 512 using Table I and y = 6 are made over an ensemble 
of 4000 runs and 400 runs, respectively. 
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Table II. Performance in Measuring Susceptibility" 

1513 

m ), N = 4  N = 8  N = I 6  N=32  N = ~  N=128 N=256 N=512 
i 

0.5 2.4 5 7.3 9.8 12.3 14.6 17.4 
2.2 3.5 4.5 5.1 5.3 5.9 
2 3 3.6 3.8 3.9 4 
2 2.8 3.5 3.7 3.8 3.8 
1.6 2.9 4.2 5.3 5.9 5.9 6.3 6,2 
1.6 2.9 4.2 5.3 6.1 6.5 6.7 6.8 
1.5 2.6 4.2 5.8 6.8 7.7 7.8 8.4 
1.8 3.9 6.4 9.7 12.8 15.5 18.6 
1.6 2.9 4.3 5.6 6.8 7.5 8 
1.5 2.8 4.9 7.7 11.2 16.2 20 

2 
3 
6 
7 

64 Table I 
3 
6 

400 2 
3 or Table I 

6 

The table shows a, the number of random generations times the square of the obtained 
relative accuracy, for the indicated values of the system size N and the cycle index y. 

of  t he  c o n v e n t i o n a l  a l g o r i t h m  Is~ is 4 N e t  2 ( t he  cos t  o f  c o n v e n t i o n a l  a lgo-  

r i t h m s  as d e s c r i b e d  in refs. 7 a n d  10 w o u l d  be  even  s o m e w h a t  b igger ) ,  t he  

c o m p u t a t i o n a l  t i m e  o f  o u r  a l g o r i t h m  is a b o u t  8 e r  2, i n d e p e n d e n t  of  the  

gr ids ize  N. [ N o t e  t h a t ,  for  m a x i m a l  efficiency, a c o n v e n t i o n a l  a l g o r i t h m  

s h o u l d  use  the  smal l e s t  poss ib le  N w h i c h  still gives r.d.e, c o m p a r a b l e  to  e,.. 
A c c o r d i n g  to  A p p e n d i x  C, th i s  w o u l d  m e a n  N =  O(e-1/P*).] 

Table III. Computational Time (in units of ~-z) in Measuring the Suscep- 
tibility on a Grid with N Gridpoints to Relative Accuracy 8, u 

Computational time 

Multigrid 
m algorithm N = 4  N = 8  N = 1 6  N=32  N = 6 4  N=128 N=256 N - 5 1 2  

0.5 Conventional 6.8 21.8 50.5 112.2 237 484.6 
Optimal 2 2.8 3.5 3.7 3.8 3.8 

64 Conventional 4.9 17.4 52.6 115 .6  236.7 485.2 992.9 2048.3 
Optimal 1.6 2.9 4.2 5.3 5.9 5.9 6.3 6.2 

400 Conventional 4.7 16.8 50.6 112 .2  235.1 501.9 960.9 
Optimal 1.6 2.9 4.3 5.6 6.8 7.5 8 

"Conventional multigrid method (one measurement per cycle, as in refs. 5, 7, and 10) vs. our 
optimal multigrid method. 
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3. S U M M A R Y  

The calculation of a thermodynamic limit of any observable to a 
relative accuracy e~ usually requires by a Monte Carlo process 

O(N a+ =el -2) 

computer operations, where e~ is the error relative to the standard devia- 
tion of the observable, N is the linear dimension of the lattice needed to 
approximate the thermodynamic limit to accuracy er, d is the dimension, 
and z is the critical exponent. 

Multigrid algorithms potentially can reduce and even eliminate not 
only the critical slowing down factor N: but also the volume factor N a. 

The parameters of the multigrid algorithm, such as the cycle index y 
and the coarse-to-fine interpolation order, depends not only on the 
involved model and its discretization, but also the observable in question. 
For the optimal calculation of the susceptibility in the one-dimensional 
massive Gaussian model it is essential to use linear interpolation and a 
cycle index which varies with the mass size. In this case the critical slowing 
down and the volume factor are completely eliminated leading to the 
optimal eMciency O(e72). 

A P P E N D I X A .  FOURIER T R A N S F O R M  E X P R E S S I O N S  

In the continuous case, by substituting (2) into (1) and into the left 
part of (3), one gets 

Jt~ ~--~2 ~ 2 c 2 - m 2 L  ~ c~ (AI) 
2L jL= I J J -)- " - 2  j= l 

and the right hand side of (3). From (4) and (AlL it can be shown by 
straightforward calculations that 

( ~ )  =0  (A2) 

L T  
(c~)  - ~z2j 2 + m2L2 (A3) 

3L2T 2 
( c 4) - (rt2j 2 + m2L2)2 (A4) 

Hence, the average magnetization ( M )  and the susceptibility (M2)  - ( M  )2 
can be calculated using (3), (A2), and (A3), leading to results (5a) and (5b) 
in Section 2.1. 
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In the discrete case, by substituting (7) into (6) and into the left part 
of (8) one gets 

J~(u)=/-7_, y '  e7sin2k~Z-}+---- ~ -  s c 7 (A5) 
j = l  j=D 

and the right-hand side of (8). From (4) and (A5) we can derive 

(c j )  =0  (A6) 

Th 2 
( c ) )  - 4L sin 2[jnh/(2L)] + m'-Lh 2 (A7) 

The average discrete magnetization (9a) and the discrete susceptibility (9b) 
in Section 2.2 are obtained by applying (A6) and (A7) to (8). 

APPENDIX B. FOURIER ANALYSIS OF THE EXPECTED 
ERROR IN THE ESTIMATION OF THE 
SUSCEPTIBILITY 

The relaxation sweep on level i [with meshsize h,.= 2ih: i=0 ,  1 ..... { =  
log2(N/2)] strongly affects, hence effectively samples, only those Fourier 
coefficients cj [cf. (2)] for which j =  O(L/hi). Hence, the number s~ of 
relaxation sweeps needed to be performed on level i depends on the con- 
tribution of these components to the deviations in measuring (M2) .  By (3) 

M 2 2 .  4 2*  cJ ck 
n- j .k  jk  (B1} 

Consider first a term ( j ,k )  in (Bl) for which both j and k are O(L/Ib}, 
hence the term is effectively sampled O(si) times in a cycle. According to 
(A2}-(A4) in Appendix A, the standard deviation of the term is 

4 
jkn2 ( ( (cJ c~)2) - ( cjck) 2) In = O(hn(n "- +m2h~) - l  L-ST)  

hence the standard deviation of its average over the O(s~) samples is 
O(sTV2ha(n2q-m2h~)-lL-ST). There are O(h72L -2) such terms, where 
each pair of them is uncorrelated, hence their total contribution is 

O(sTI/Zh~(n2 + m2h~)-1 L-2T) 

In the case j =  O(L/h~_r) and k =  O(L/hi), where r~> 1 (i.e., h~>h~_r), 
the term (j, k) in (B1) is effectively sampled as follows (see also ref. 4): in 
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an inner loop, for a (nearly) fixed value of cj, the values of ck are averaged 
O(sl/si_ r) times, yielding an average whose deviation is of the order 

o (~ ('-~ 1-"2 ~ l,-')~ o (~  ( ~'-~ .~,_~. , ~, ~.,~, ~_ + ~ , ~ ' P ~  

Then, in an outer loop, the cj in this average is averaged over O(si_r~ 
samples, giving results with deviations of order 

\ j k  \ s ~  / 

[ s ~ / 2 .  ~ ~ _~/2LTI 0 \ - - ~  tn ' k -  + m2L 2) -t/2 (ttzjz + rn2L~_) 
/ 

= O(s7  ~/2h~h~ - r(rr + m2h2) -,/2 (7g2 + mZh2_ r) --,/2 L -ST)  

There are O(h7 t - t  h~_,.L-) such terms, effectively uncorrelated, hence their 
total deviation is 

O(s7 ,/21,]/,_l,~(zr2 + m2h~) -,/2 (rt ~. + m2h~_ ~) -,/2 L -2T )  

Summing over integers r>~ 0 gives again 

0 s7  -h;. - ( r e - + m - h , ) -  - TL  -~- ~ h;_-,.(n- + m-h,_, .)-i /2 
r>~O 

= O(s 71/2h~(rt ~-+ " ~ _ m-hT) L-~ 'T)  

Therefore, the total error in measuring (M- ' )  is 

e = O  s71/2h~(TtZ +m2h~) -I L - 2 T  (B2) 
i 

APPENDIX C. CALCULATION OF THE DISCRETIZATION 
ERROR ( M  2 ) - < M  z) 

To calculate the discretization error, observe first that for N/2 < j  < N 
the term in (9b) is smaller than 

:rh ~ ( / 'h  4 Vh-" 
LS(2 +,;,2h2 ) <~ rain k ~-~3, m,_-~s / 
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hence the sum of all these N/2 terms is less than 

1 1 
CLT min ( ~s ,  m2~L ,-N) 

where C=0.5.  A similar estimate, but with a different value of C, is 
obtained for the sum of all terms N/2 < j  < oo in (5b). 

For j<N/2 ,  each term in (9b) can be approximated by a Taylor 
expansion as follows: 

4L T 1 - ( jzth/2L ) 2 
;r ~2j4[ 1 -- ~(jnh/2L ) 2 ] + m'-L Zj2[ 1 -- ~(jrch/2L ) 2 ] 

4LT 1 -- fl(jrd~/ZL ) 2 
~,_ ~2j4 + m,_L2j2 

where 1/3 < fl < 2/3. Comparing this with the ja, term in (5b), we conclude 
that the total discretization error for these terms is approximately 

LTflN_ z ~ ,  1 1 j=l n2J "-+m'-Ls-~ CLTmin z, m,_Z2N 

For general p-order discretization, a similar estimation would give 

1 1 
CLT min ( ~p,  m,_-L ,_N) 

Therefore, the total discretization error is 

C L T m i n ( 1  1 ) Nmin(3,p) ' m2L2N <~ C L T N  -min(3,pl 

hence the relative (to a) discretization error estimator is 

C(rc'- + m'-L "-) 
r.d.e. - Np" + m,_LZN (C1) 

where p ,  = min(3, p). 
Clearly, there is no advantage in raising the order of the discretization 

error beyond p = 3. 
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